148 research outputs found

    Urban Lymphatic Filariasis in the Metropolis of\ud Dar es Salaam, Tanzania

    Get PDF
    The last decades have seen a considerable increase in urbanization in Sub-Saharan Africa, and it is estimated that over 50% of the population will live in urban areas by 2040. Rapid growth of cities combined with limited economic resources often result in informal settlements and slums with favorable conditions for proliferation of vectors of lymphatic filariasis (LF). In Dar es Salaam, which has grown more than 30 times in population during the past 55 years (4.4 million inhabitants in 2012), previous surveys have indicated high prevalences of LF. This study investigated epidemiological aspects of LF in Dar es Salaam, as a background for planning and implementation of control. Six sites with varying distance from the city center (3–30 km) and covering different population densities, socioeconomic characteristics, and water, sewerage and sanitary facilities were selected for the study. Pupils from one public primary school at each site were screened for circulating filarial antigen (CFA; marker of adult worm infection) and antibodies to Bm14 (marker of exposure to transmission). Community members were examined for CFA, microfilariae and chronic manifestations. Structured questionnaires were administered to pupils and heads of community households, and vector surveys were carried out in selected households. The study indicated that a tremendous decrease in the burden of LF infection had occurred, despite haphazard urbanisation. Contributing factors may be urban malaria control targeting Anopheles vectors, short survival time of the numerous Culex quinquefasciatus vectors in the urban environment, widespread use of bed nets and other mosquito proofing measures, and mass drug administration (MDA) in 2006 and 2007. Although the level of ongoing transmission was low, the burden of chronic LF disease was still high. The development has so far been promising, but continued efforts are necessary to ensure elimination of LF as a public health problem. These will include improving the awareness of people about the role of mosquitoes in transmission of LF, more thorough implementation of environmental sanitation to reduce Cx. Quinquefasciatus breeding, continued MDA to high-risk areas, and set-up of programmes for management of chronic LF disease

    Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis

    Get PDF
    The most important factor for effective zooprophylaxis in reducing malaria transmission is a predominant population of a strongly zoophilic mosquito, Anopheles arabiensis. The feeding preference behaviour of Anopheline mosquitoes was evaluated in odour-baited entry trap (OBET). Mosquitoes were captured daily using odour-baited entry traps, light traps and hand catch both indoor and in pit traps. Experimental huts were used for release and recapture experiment. The mosquitoes collected were compared in species abundances. Anopheles arabiensis was found to account for over 99% of Anopheles species collected in the study area in Lower Moshi, Northern Tanzania. In experimental release/capture trials conducted at the Mabogini verandah huts, An. arabiensis was found to have higher exophilic tendency (80.7%) compared to Anopheles gambiae (59.7%) and Culex spp. (60.8%). OBET experiments conducted at Mabogini collected a total of 506 An. arabiensis in four different trials involving human, cattle, sheep, goat and pig. Odours from the cattle attracted 90.3% (243) compared to odours from human, which attracted 9.7% (26) with a significant difference at P = 0.005. Odours from sheep, goat and pig attracted 9.7%, 7.2% and 7.3%, respectively. Estimation of HBI in An. arabiensis collected from houses in three lower Moshi villages indicated lower ratios for mosquitoes collected from houses with cattle compared to those without cattles. HBI was also lower in mosquitoes collected outdoors (0.1-0.3) compared to indoor (0.4-0.9). In discussing the results, reference has been made to observation of exophilic, zoophilic and feeding tendencies of An. arabiensis, which are conducive for zooprophylaxis. It is recommended that in areas with a predominant An. arabiensis population, cattle should be placed close to dwelling houses in order to maximize the effects of zooprophylaxis. Protective effects of human from malaria can further be enhanced by keeping cattle in surroundings of residences

    Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative insecticides for the control of malaria and filarial vectors are of paramount need as resistance is increasing among classes of insecticides currently in use in the public health sector. In this study, mosquitocidal activity of <it>Schinus terebinthifolia </it>essential oil against <it>Anopheles gambiae </it>s.s., <it>An. arabiensis </it>and <it>Culex quinquefasciatus </it>was assessed in laboratory, semi- field and full- field conditions</p> <p>Method</p> <p>Twenty third instar larvae of both <it>Anopheles gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>were exposed to different dosages of plant extract in both laboratory and semi- field environments. Observation of the mortality response was assessed at intervals of 12, 24, 48 and 72 hours. Adult semi- gravid female mosquitoes were exposed to papers treated with <it>S. terebinthifolia </it>and compared with WHO standard paper treated with alphacypermethrin (0.05%).</p> <p>Results</p> <p>Gas chromatography, coupled to mass spectrometry, identified 15 compounds from <it>S. terebinthifolia </it>extracts, the most abundant identified compound was δ-3-carene (55.36%) and the least was γ-elemene (0.41%). The density of the oil was found to be 0.8086 g/ml. The effective dosages in the insectary ranged from 202.15 to 2625.20 ppm and were further evaluated in the semi- field situation. In the laboratory, the mortality of <it>Cx. quinquefasciatus </it>ranged from 0.5 to 96.75% while for <it>An. gambiae </it>s.s it was from 13.75 to 97.91%. In the semi- field experiments, the mortality rates observed varied for both species with time and concentrations. The LC<sub>50 </sub>and LC<sub>95 </sub>value in the laboratory was similar for both species while in the semi- field they were different for each. In wild, adult mosquitoes, the KT<sub>50 </sub>for <it>S. terebinthifolia </it>was 11.29 minutes while for alphacypermethrin was 19.34 minutes. The 24 hour mortality was found to be 100.0% for <it>S. terebinthifolia </it>and 75.0% for alphacypermethrin which was statistically significant (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>The efficacy shown by essential oils of fruits and seeds of <it>S. terebinthifolia </it>has given an opportunity for further investigation of individual components of these plant extracts and to evaluate them in small- scale field trials.</p

    Increased tolerance of Anopheles gambiae s.s. to chemical insecticides after exposure to agrochemical mixture

    Get PDF
    Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to insecticide-based vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis. The objective of this study was to investigate the effect of exposure of the malaria mosquito, Anopheles gambiae s.s. larvae for 72h to sub-lethal concentrations of the agrochemical mixture (pesticides, herbicides and fungicides). Their subsequent tolerances were measured to deltamethrin (pyrethroid), DDT (organochlorine) and bendiocarb (carbamate) currently used for vector control. The mean LC50 was determined and tolerance ratios for larvae exposed to agrochemical comparatively with unexposed larvae were calculated and expressed as fold increased tolerance. Bioassays revealed a significant increase in larval tolerance to detamethrin (1.83-2.86 fold), DDT (1.31-1.53 fold) and bendiocarb (1.14-1.19 fold) following exposure to 0.1 µM and 1µM agrochemical mixture. The observed increased tolerance in this study is likely to be based on metabolic resistance mechanisms. Overall, this study reveals the potential of agrochemicals to increase the tolerance of mosquito larvae to chemical insecticides

    Role of cattle treated with deltamethrine in areas with a high population of Anopheles arabiensis in Moshi, Northern Tanzania

    Get PDF
    Malaria control measures were initiated from in October 2005 to August 2006 in the Lower Moshi irrigation schemes, Tanzania. This manuscript reports on the entomological evaluation of the impact of pyrethroid-treated cattle in reducing the population of the Anopheles arabiensis for selected houses in the Lower Moshi irrigation scheme. Cattle were sprayed with the pyrethroid (deltamethrin) acaricide. Grazing and non-grazing cattles were compared and assessed for difference in knockdown resistance (kdr) time using cone or contact bioassay and residual effect (mortality). In experimental huts, mortality was compared between the huts with treated and untreated cattle. Results from contact bioassays of cattle treated with deltamethrin showed a knockdown effect of 50% within 21 days for grazing cattle and 29 days for non-grazing cattle. Residual effect at 50% was achieved within 17 days for grazing cattle compared to 24 days for inshed cattle. In discussing the results, reference has been made to the exophilic and zoophilic tendencies of An. arabiensis, which are conducive for zooprophylaxis. Experimental studies in Verandah huts at Mabogini compared An. arabiensis and Culex spp collected from huts with different baits, i e. human, untreated cow and treated cow. Results indicate higher mortality rates in mosquitoes collected from the hut containing the treated cow (mean = 2) compared to huts with untreated cow (mean = 0.3) and human (mean = 0.8). A significantly higher number of Culex spp. was recorded in huts with treated cows compared to the rest. This study has demonstrated the role of cattle treated with pyrethroid in the control of malaria and reduction of vector density. It showed that, in areas with a predominant An. arabiensis population, cattle should be placed close to dwelling houses in order to maximize the effects of zooprophylaxis. Protective effects of cattle can further be enhanced by regular treatment with pyrethroids at least every three weeks. This paper demonstrates that cattle can be considered as Insecticide-Treated Material (ITM) as long as acaricide treatment is conducted regularly

    Experimental hut and bioassay evaluation of the residual activity of a polymer-enhanced suspension concentrate (SC-PE) formulation of deltamethrin for IRS use in the control of Anopheles arabiensis.

    Get PDF
    BACKGROUND: The Stockholm Convention on Persistent Organic Pollutants (POPs) came into effect in 2004; the use of DDT for malaria control has been allowed to continue under exemption since then due to a perceived absence of equally effective and efficient alternatives. Alternative classes of insecticide for indoor residual spraying (IRS) have a relatively short residual duration of action (2-6 months according to WHO). In areas of year-round transmission multiple spray cycles are required, resulting in significantly higher costs for malaria control programs and user fatigue. This study evaluated performance of a new formulation of deltamethrin (pyrethroid) with polymer (SC-PE) to prolong the effective residual action to >6 months. METHODS: Deltamethrin SC-PE was evaluated alongside an existing water dispersible granule (WG) formulation and DDT water dispersible powder (WP) in laboratory and hut bioassays on mud, concrete, palm thatch and plywood substrates. An experimental hut trial was conducted in Lower Moshi Rice Irrigation Zone, Tanzania from 2008-2009 against wild, free-flying, pyrethroid susceptible An. arabiensis. Performance was measured in terms of insecticide-induced mortality, and blood-feeding inhibition. Bioassays were carried out monthly on sprayed substrates to assess residual activity. RESULTS: Bioassays in simple huts (designed for bioassay testing only) and experimental huts (designed for testing free flying mosquitoes) showed evidence that SC-PE improved longevity on mud and concrete over the WG formulation. Both deltamethrin SC-PE and WG outperformed DDT in bioassays on all substrates tested in the laboratory and simple huts. In experimental hut trials SC-PE, WG and DDT produced high levels of An. arabiensis mortality and the treatments were equivalent over nine months' duration. Marked seasonal changes in mortality were recorded for DDT and deltamethrin treatments, and may have been partly influenced by outdoor temperature affecting indoor resting duration of mosquitoes on sprayed surfaces, although no clear correlation was demonstrated. CONCLUSIONS: There is a limited range of alternative insecticides for IRS, and deltamethrin SC-PE is likely to have an important role as part of a rotation strategy with one or more different insecticide classes rotated annually, particularly in areas that currently have low levels of pyrethroid resistance or low LLIN coverage and year-round malaria transmission

    Insecticide susceptibility status of human biting mosquitoes in Muheza, Tanzania

    Get PDF
    Background: There has been a rapid emergence in insecticide resistance among mosquito population to commonly used public health insecticides. This situation presents a challenge to chemicals that are currently used to control mosquitoes in sub-Saharan African. Furthermore, there is limited information on insecticide susceptibility status of human-biting mosquitoes in some areas of Tanzania. This study aimed to determine insecticide susceptibility status of human biting mosquitoes in a rural area of north-eastern Tanzania.Methods: The study was conducted in two villages in Muheza district, Tanzania. Insecticide susceptibility bioassays were performed according to the World Health Organization standard operating procedures on two to five-day old human biting mosquitoes. The mosquitoes of each species were exposed to four classes of insecticides commonly used for malaria vector control. Mosquito mortality rates (%) were determined after 24 hours post insecticide exposure.Results: Mosquito species tested were Anopheles gambiae s.l., An. funestus, Aedes aegypti, and Culex quinquefasciatus species. Real-time PCR have showed that the main sibling species of An. gambiae complex and An. funestus group were An. gambiae s. s. (58.2%) and An. funestus s. s. (91.1%), respectively. All mosquitoes, except Ae. aegypti formosus were susceptible to pirimiphos-methyl (0.25%). An. gambiae s. l. was found to be resistant to permethrin (0.75%) but showed possibility of resistance to DDT (4%) and bendiocarb (0.1%). Our findings have shown that, An. funestus was fully susceptible to all insecticide tested.Conclusion: The present study has revealed different levels of insecticide susceptibility status to four classes of commonly used insecticides in the most common mosquito vectors of human diseases in north-eastern Tanzania. The findings of the present study call for integrated vector control interventions.

    Indoor residual spraying with microencapsulated DEET repellent (N, N-diethyl-m-toluamide) for control of Anopheles arabiensis and Culex quinquefasciatus.

    Get PDF
    BACKGROUND: Evolution of insecticide resistance in Anopheles gambiae complex necessitates evaluation of alternative chemical classes to complement existing insecticides for long lasting insecticidal nets (LLIN) and indoor residual spraying (IRS). Microencapsulated (MC) DEET (N, N-diethyl-m-toluamide) is a formulation of the popular repellent, which gives long lasting activity when applied to nets. Its suitability for IRS use has not been evaluated before. This study assessed the efficacy of DEET MC, for IRS in experimental huts. METHODS: DEET MC was tested alongside standard repellent and non-repellent residual insecticides: lambdacyhalothrin, permethrin, pirimiphos methyl and DDT. Residual formulations of these compounds were sprayed on plywood panels attached to walls of experimental huts to assess efficacy against pyrethroid resistant, wild free-flying Anopheles arabiensis and Culex quinquefasciatus. The panel treatments were rotated weekly between huts. RESULTS: The overall mortalities of An. arabiensis induced by the various treatments (range: 76-86%) were significantly greater than mortality in the untreated control (8%, P < 0.001). Mortality of An. arabiensis in DEET sprayed huts (82%) was higher than in lambdacyhalothrin CS (76%, P = 0.043) but not significantly different to pirimiphos methyl CS (86%, P = 0.204) or DDT huts (81%, P = 0.703). Against Cx. quinquefasciatus DEET MC was less effective, inducing lower mortality (29%) than other treatments. An arabiensis blood feeding rates were higher in the unsprayed control (34%) than in sprayed huts (range between treatments: 19-22%, P < 0.002), and DEET provided equivalent or superior blood feeding inhibition (44%) to other insecticides. Against Cx. quinquefasciatus there was no significant reduction in blood-feeding for any treatment relative to the control. There was a significantly higher exiting of An. arabiensis from huts sprayed with DEET (98%), lambdacyhalothrin (98%) and permethrin (96%) relative to the control (80%, P < 0.01). Exiting rates of Cx. quinquefasciatus did not differ between treatment huts and the control. CONCLUSION: Microencapsulated DEET acts like an insecticide at ambient temperature and induces mosquito mortality when applied to walls made from wooden panels. This trial demonstrated the potential of microencapsulated DEET to control An. arabiensis and warrants further studies of residual activity on interior substrates

    Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial.

    Get PDF
    BACKGROUND: Progress in malaria control is under threat by wide-scale insecticide resistance in malaria vectors. Two recent vector control products have been developed: a long-lasting insecticidal net that incorporates a synergist piperonyl butoxide (PBO) and a long-lasting indoor residual spraying formulation of the insecticide pirimiphos-methyl. We evaluated the effectiveness of PBO long-lasting insecticidal nets versus standard long-lasting insecticidal nets as single interventions and in combination with the indoor residual spraying of pirimiphos-methyl. METHODS: We did a four-group cluster randomised controlled trial using a two-by-two factorial design of 48 clusters derived from 40 villages in Muleba (Kagera, Tanzania). We randomly assigned these clusters using restricted randomisation to four groups: standard long-lasting insecticidal nets, PBO long-lasting insecticidal nets, standard long-lasting insecticidal nets plus indoor residual spraying, or PBO long-lasting insecticidal nets plus indoor residual spraying. Both standard and PBO nets were distributed in 2015. Indoor residual spraying was applied only once in 2015. We masked the inhabitants of each cluster to the type of nets received, as well as field staff who took blood samples. Neither the investigators nor the participants were masked to indoor residual spraying. The primary outcome was the prevalence of malaria infection in children aged 6 months to 14 years assessed by cross-sectional surveys at 4, 9, 16, and 21 months after intervention. The endpoint for assessment of indoor residual spraying was 9 months and PBO long-lasting insecticidal nets was 21 months. This trial is registered with ClinicalTrials.gov, number NCT02288637. FINDINGS: 7184 (68·0%) of 10 560 households were selected for post-intervention survey, and 15 469 (89·0%) of 17 377 eligible children from the four surveys were included in the intention-to-treat analysis. Of the 878 households visited in the two indoor residual spraying groups, 827 (94%) had been sprayed. Reported use of long-lasting insecticidal nets, across all groups, was 15 341 (77·3%) of 19 852 residents after 1 year, decreasing to 12 503 (59·2%) of 21 105 in the second year. Malaria infection prevalence after 9 months was lower in the two groups that received PBO long-lasting insecticidal nets than in the two groups that received standard long-lasting insecticidal nets (531 [29%] of 1852 children vs 767 [42%] of 1809; odds ratio [OR] 0·37, 95% CI 0·21-0·65; p=0·0011). At the same timepoint, malaria prevalence in the two groups that received indoor residual spraying was lower than in groups that did not receive indoor residual spraying (508 [28%] of 1846 children vs 790 [44%] of 1815; OR 0·33, 95% CI 0·19-0·55; p<0·0001) and there was evidence of an interaction between PBO long-lasting insecticidal nets and indoor residual spraying (OR 2·43, 95% CI 1·19-4·97; p=0·0158), indicating redundancy when combined. The PBO long-lasting insecticidal net effect was sustained after 21 months with a lower malaria prevalence than the standard long-lasting insecticidal net (865 [45%] of 1930 children vs 1255 [62%] of 2034; OR 0·40, 0·20-0·81; p=0·0122). INTERPRETATION: The PBO long-lasting insecticidal net and non-pyrethroid indoor residual spraying interventions showed improved control of malaria transmission compared with standard long-lasting insecticidal nets where pyrethroid resistance is prevalent and either intervention could be deployed to good effect. As a result, WHO has since recommended to increase coverage of PBO long-lasting insecticidal nets. Combining indoor residual spraying with pirimiphos-methyl and PBO long-lasting insecticidal nets provided no additional benefit compared with PBO long-lasting insecticidal nets alone or standard long-lasting insecticidal nets plus indoor residual spraying. FUNDING: UK Department for International Development, Medical Research Council, and Wellcome Trust

    Risk factors for malaria infection prevalence and household vector density between mass distribution campaigns of long-lasting insecticidal nets in North-western Tanzania.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most widely deployed vector control intervention in sub-Saharan Africa to prevent malaria. Recent reports indicate selection of pyrethroid insecticide resistance is widespread in mosquito vectors. This paper explores risk factors associated with malaria infection prevalence and vector density between mass distribution campaigns, changes in net coverage, and loss of protection in an area of high pyrethroid resistance in Northwest Tanzania. METHODS: A cross sectional malaria survey of 3456 children was undertaken in 2014 in Muleba district, Kagera region west of Lake Victoria. Vector density was assessed using indoor light traps and outdoor tent traps. Anophelines were identified to species using PCR and tested for Plasmodium falciparum circumsporozoite protein. Logistic regression was used to identify household and environmental factors associated with malaria infection and regression binomial negative for vector density. RESULTS: LLIN use was 27.7%. Only 16.9% of households had sufficient nets to cover all sleeping places. Malaria infection was independently associated with access to LLINs (OR: 0.57; 95% CI 0.34-0.98). LLINs less than 2 years old were slightly more protective than older LLINs (53 vs 65% prevalence of infection); however, there was no evidence that LLINs in good condition (hole index < 65) were more protective than LLINs, which were more holed. Other risk factors for malaria infection were age, group, altitude and house construction quality. Independent risk factors for vector density were consistent with malaria outcomes and included altitude, wind, livestock, house quality, open eaves and LLIN usage. Indoor collections comprised 4.6% Anopheles funestus and 95.4% Anopheles gambiae of which 4.5% were Anopheles arabiensis and 93.5% were Anopheles gambiae sensu stricto. CONCLUSION: Three years after the mass distribution campaign and despite top-ups, LLIN usage had declined considerably. While children living in households with access to LLINs were at lower risk of malaria, infection prevalence remained high even among users of LLINs in good condition. While effort should be made to maintain high coverage between campaigns, distribution of standard pyrethroid-only LLINs appears insufficient to prevent malaria transmission in this area of intense pyrethroid resistance
    • …
    corecore